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Stokes flow past a smooth cylinder 
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SUMMARY 
Ranger's solution of the two-dimensional Stokes flow past a smooth body is analyzed in detail. The body can be 
made convex or concave depending on the choice of its two parameters and concavity is found to be necessary but 
not sufficient for separation to occur. A relationship exists between the formation of a Stokesian wake and the 
curvature at the concave end of the body. Particular attention is given to the case when the body degenerates to a 
circular arc. The two-dimensional Stokes flow past a circular arc is strikingly similar to the axisymmetric Stokes 
flow past a spherical cap. 

1. Introduction 

Considerable interest has recently been stirred in Stokes flow because separation and reverse 

flow have been shown to occur even when fluid inertia is totally neglected. Dorrepaal, 

O'Neill and Ranger [1, 2] have examined Stokes flow past a spherical cap and found 

evidence of Stokesian wakes. The same authors along with Majumdar [3] have also 

detected separation and reverse flow in the form of axisymmetric Moffatt vortices in the 

Stokes flow past a closed torus. Michael and O'Neill [4] have looked at the Stokes flow 

about a spherical lens and again there is ample evidence of separation near the rim on the 

concave side of a thin concave-convex lens and on the flatter side of a thin asymmetric 

biconvex lens. 

Now none of the above bodies have completely smooth surfaces. The cap and the lens 

have sharp-edged rims and the closed torus features an axisymmetric cusp. Although Stokes 

flows past such bodies exhibit separation, very little is known about the existence of wakes in 

Stokes flows past entirely smooth bodies. The sphere and the ellipsoid of revolution do not 

induce reverse flow but no work has yet been done on the Stokes flow past a smooth 

concave body of revolution. The solution of the governing equations for such a flow is an 

exceedingly difficult problem and yet progress has recently been made on an analogous two- 

dimensional problem. Ranger [5] has shown that an attached vortex is present within the 

concavity of a smooth concave cylinder in a two-dimensional Stokes flow. The purpose of 

Ranger's paper is to show how the solution is obtained using a new complex variable 

technique and other than establishing the existence of the vortex little analysis of the flow is 

done. In the present paper Ranger's solution is analyzed in detail and a number of 
interesting features discussed. 

Finn and Noll [6] have shown that the fluid velocity in a two-dimensional Stokes flow 

past a finite fixed obstacle must necessarily become infinite at great distances from the 

obstacle. In other words it is not possible to have a uniform Stokes flow past a finite body in 
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178 J. M. Dorrepaal 

two dimensions. However Pearson and Proudman [7] have shown that the solution which 
becomes infinite most slowly at large distances from the body can be matched to a uniform 
stream at infinity. It seems reasonable then to consider this slowly diverging inner solution 
as the two-dimensional analogue to a uniform three-dimensional Stokes flow. The present 
paper gives strong evidence to support this assumption. 

2. Statement of the problem 

In two-dimensional flows the fluid velocity 

Q = Ui + l~ (2.1) 

can be represented in terms of a stream function ~(X, Y) as follows: 

U = - O~Y-' V = o--X-" (2.2) 

In Stokes flow the stream function satisfies the biharmonic equation 

V4~g = 0 (2.3) 

and the fluid velocity Q must vanish on the boundary of the obstacle. 
From [7] the condition on the stream function at infinity is 

,~ ½ Y l o g ( X  2 + y2)  as  X 2 -F y2  __, 00. (2.4) 

3. The solution 

Ranger's solution is obtained using an inversion technique. The flow to be inverted is the 
two-dim~nsional Stokes flow past an oblate ellipse due to a stokeslet in the fluid along the 
extension of the ellipse's minor axis (Fig. 1). 

Y 
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(c,o) x 
/~z.  STOKESLET 

\ 

/ 

Figure 1. Relative positions of oblate e||ipse and stokeslet (1 - 2 z < c). 
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Stokes  f low past a smooth cylinder 179 

Parametric equations describing the boundary of the ellipse are 

x = ( 1 - 2 2 ) c o s q b } 0 ~ b < 2 z r  
y (1 + 22) sin q~ 

(3.1) 

where 0 ~< 2 ~< 1 is a parameter in the problem. These equations can be expressed in the 
form ~ = e i* where 

z = x + iy = ~ -  22/~. (3.2) 

The coordinates of the stokeslet in the x, y-plane are (c, 0) where c > 1 - 22 is a second 
parameter. A stream function ~,(x, y) can be defined from which the fluid velocity 
components 

8~ 8~u 
u - v - ( 3 . 3 )  

8y 8x 

are derived. The stream function is biharmonic in (x, y) and the stokeslet condition is 

~u ~ -½y log[(x - c) 2 + y2] as (x - c) 2 + y2 ~ O. (3.4) 

The solution to this problem is found in [5] and is stated here for reference: 

. . , 2 ( ~  + ~) - d ~ -  1/cl 
u + w = l o g  - - 5 c -  ~ . . . . .  + 

2(ff if) - ~ / d  - , /  

A(1 - ~ )  
d2~ + ~ - d(1 + ff~) 

+ (~ - 22/~ - 1/~ + 22~) [(~_ d)_ 1 _ ( ~ _  l / d ) -  t + A ( d ~ -  1)- 2] (3.5) 
(1 + 22/~ 2) 

where 

((z) = ½z + ½(z 2 + 421) ~ (inverse of (3.2)) 

(l-d2)(1 +22 ) 
d=((c) ,  A =  d( l+22/d  2) (3.6) 

Now if this solution is inverted into the X, Y-plane using the transformation 

x - - c  y 
X = (x - c,2) + y2 ' Y = ( X  - -  CX2) + y2 ' (3.7) 

then by the Inversion Theorem [8], the function 

(x - c) 2 + y2 (3.8) 
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is biharmonic in (X, Y). In addition the stokeslet condition (3.4) becomes the condition at 

infinity given by (2.4). In other words by inverting the stokeslet problem in accordance with 
(3.7-8), we obtain the "uniform" two-dimensional Stokes flow past a cylinder whose cross- 
section is an inverted oblate ellipse. The velocity components in this new flow are given by 

U _  
~_1 X 2 _ y 2  2 X Y  
8 y  - (u + 2Y~u) X2 + y2 + (v - 2X~u) X2 2t- y 2 ,  

8 ~  2 X Y  X 2 - -  y2  

V = 8 X  = (u + 2Y~) X2 + y2 (V -- 2X~u) X2 + y2 ,  

(3.9) 

where (u, v) are defined in (3.5). 

4. The shape of the obstacle 

Parametric equations describing the boundary of the obstacle in the X, Y-plane are obtained 
by substituting (3.1) into (3.7). The result is 

X = 

y =  

(1 - 2 2) cos ~b - c 

(1 + 22) 2 --[- c 2 - 2c(1 - 22) cos (]) - 4). 2 cos 2 ~ ' 

(1 + 22) sin ~b 

(1 + 2 2 )  2 -~- c 2 - 2c(1 - 22) cos  ~b - -  4 2 2  COS 2 t~ " 

(4.1) 

When 2 = 0, the obstacle is a circle centered at ( - c / ( c  2 - 1), 0) with radius 1/(c 2 - 1). 

When 2 = 1, the obstacle is a circular arc of radius 1/(2c) subtending an angle 2~ 
= 4 co t -  ~ (½c) at its center. For intermediate values of 2, the obstacle may be convex or 
concave depending upon the value of c. In Figure 2b the shape of the obstacle when c = 1, 
22 = ½ is shown. In all cases the body is symmetric about the X-axis. 

Our first task is to determine when the cylinder is concave and when it is convex. One way 
to answer this question is to look for points on the boundary of the cylinder which have a 

¢ - o ~  Y 

(a) (b) 
,Zigure 2. Var ious  cylinder cross-sections.  

Y 

(c) 

(a) circle; 22 = 0. (b) k idney-shape;  c = 1, 22 = ½. (c) circular  arc; 22 = 1. 
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Stokes flow past a smooth cylinder 181 

vertical tangent. Clearly q~ = 0, n are two such points. If there exists another  point  ~b = ~b o 
(0 < q~o < n) with this proper ty  the cylinder has a concave cross-section. If such a point  
does not  exist the cylinder is convex. 

Setting dX/dt  = 0 in (4.1) where t = cos ~b, we obtain 

C lC2 (c 4- 1 4- 22)(c -- 1 -- )~2) 1½. (4.2) 
cos ~b o - 1 - 2 2 -(1 - -  2 2 )  2 4- 422 

N ow  in order  for 0 < ~b 0 < ~z, we must have - 1 < cos ~b o < 1. F rom (4.2) this implies that 

1 4- 622 4- 24 
1 - 22 < c < 1 - -  ,~2 (4.3) 

This is the condit ion for the cylinder to be concave. 
Expression (4.3) correctly predicts the presence or absence of concavity in the examples 

given in Figure 2. When 2 = 0, (4.3) is inconsistent indicating the convexity of the circle for 
all values of c. When 2 = 1, (4.3) is always true implying that  circular arcs are always 
concave. When c = 1, 22 = ½, the concavity condit ion is again satisfied. 

5. Separation 

N ow  that the geometry of the cylinder has been analyzed we turn next to the flow properties. 
In particular we look for cylinders which exhibit a Stokes wake. At the point  of a t tachment  
of such a wake the fluid vorticity vanishes and so we must examine the vorticity on the 
boundary  of the cylinder. F r o m  (3.7-8) the fluid vorticity is given by 

1 4uY 4vX 
V 2 ~ t -  X 2 4- y2 V2{// 4- X 2 4- y2 X 2 + y2 + 4V. (5.1) 

Along the boundary  ( = e/°, the last three terms of (5.1) vanish and so separation occurs at 

those points ~b for which 

V2~,1¢=o,, = ( ,~v c~_~) = 0 .  (5.:2) 
"~X ~ = ei4~ 

Using (3.5) and omitt ing the algebraic details we find that the boundary  vorticity vanishes at 

q~ = fl where 

c(1 - ;~2) 
cos fl = - 422 (5.3) 

Thus separation occurs as long as cos fl > - 1 which implies 

422 
1 -- ,~2 < C < 1 -- ,~" (5.4) 
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182 J. M. Dorrepaal 

This is the condition a cylinder must satisfy in order for a Stokes wake to form about its rear 
end ~b = n. When this condition is satisfied the point of separation is given by (5.3). 

Now it is easy to see that the separation condition (5.4) implies the concavity condition 
(4.3). Thus any cylinder which exhibits a Stokes wake must necessarily be concave. On the 
other hand it is possible for a cylinder to be concave but exhibit no such wake. For  the class 
of smooth bodies discussed in this paper therefore, concavity is necessary but not sufficient 
for the Stokes flow about the body to separate and form a wake. 

In addition the separation condition does not hold for all values of 2. Condition (5.4) is 
only consistent when 

3 - 2w/2 < 2 2 ~< 1. (5.5) 

When 22 ~< 3 - 2x/~ = .1716, the concavity of the obstacle (if it is concave at all) is not 
severe enough to induce separation. 

A comparison of (4.2) with (5.3) reveals that 

cos ~b o >i cos fl (5.6) 

with the equality occurring when 2 2=  1 (circular arc). This means that the point of 
separation is always located along the concave surface of the cylinder (Fig. 3). In the case of 
the circular arc the dividing streamline emanates from the rim of the cylinder (Fig. 4b). 

6. Geometric significance of separation condition 

Because the cylinders being considered in this paper have smooth non-circular boundaries it 
is interesting to pause for a moment and examine whether boundary curvature might have 
an effect on the formation of Stokes wakes. Since these wakes always form within the 
concavity of the cylinder we begin by calculating the radius of curvature r c at q~ = ~. The 
result is 

(1 + 22) 2 

rc[4'=~ = [c + 1 - )~2][1 + 622 + 24 - c(1 - 22)] " 
(6.1) 

Since the Cartesian coordinates of the point ~b = ~ are ( -  1/(c + 1 - )2), 0), the center of 

Figure 3. Stokes separation occurs along the cylinder's concave surface. 
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Stokes f low past a smooth cylinder 183 

curvature at 4, = n is (Cc[,=~, O) where 

1 1 I ( 1 + 2 2 )  2 ] 
Cc['~='~ = rcl~'== c + 1 - 22 c + 1 - 22 -1 + 622 + ) 4  _ c(1 - 2 2) - 1 . (6.2) 

Interestingly enough the separation condition (5.4) is equivalent to the condition 

Ccl4,= ~ <~ O. (6.3) 

This statement is significant only for cylinders being considered in this paper. Another 
way of expressing (6.3) is 

rcl~= ~ ~< 22 (6.4) c + l -  

but no solely geometrical significance can be attached to the quantity on the right side of 
(6.4). This quantity does give the location of the rear end of the cylinder, but this means that 
it has positional significance rather than geometrical significance. Condition (6.4) neverthe- 
less calls for a closer examination of the effects of boundary curvature on the formation of 
wakes in Stokes flow. 

7. The circular arc (;t z = 1) 

In Section 5 it was shown that the Stokes flow past a circular arc separates at the endpoints 
of the arc to form a Stokes wake along its concave side (Fig. 4b). This problem is the two- 
dimensional analogue of the uniform axisymmetric Stokes flow past a spherical cap and so a 
comparison of the two flows is in order. In Table 1 such a comparison is carried out. The cap 
and the arc are both assumed to have unit radius and the semi-angle ~ which both subtend 
at their respective centers provides the basis for comparison. The flow at infinity may be in 
either the positive or negative direction because Stokes flows are reversible. 

¥ 

/ 

X 
(1,O) 

< 

( a )  ( b )  
Figure 4. Relative positions of R, the rear stagnation point, and M, the point of 
maximum intra-wake velocity. 
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TABLE 1 

J. M. Dorrepaal 

Location of Location of Maximum 

rear stagnation intra-wake intra-wake 

point velocity maximum velocity 

CAP ARC CAP ARC CAP ARC 

0 ° 1.0 1.0 1.0 1.0 0.0 0.0 

15 ° 0.92 0.92 0.95 0.94 .0017 .0030 

30 ° 0.72 0.72 0.82 0.81 .0079 .0142 

45 ° 0.47 0.45 0.64 0.63 .0160 .0294 

60 ° 0.18 0.16 0.44 0.43 .0236 .0437 

75 ° -0 .10  - 0 . 1 2  0.22 0.21 .0287 .0534 

90 ° -0 .35  -0 .37  0.0 0.0 .0305 .0569 

105 ° -0 .57  -0 .58  -0 .22  - 0 . 2 0  .0287 .0535 

120 ° -0 .74  -0 .75  -0 .42  - 0 . 4 0  .0238 .0443 

135 ° -0 .86  -0 .87  -0 .60  -0 .57  .0167 .0311 

150 ° -0 .94  -0 .95  -0 .76  -0 .73  .0090 .0168 

165 ° -0 .99  -0 .99  -0 .89  -0 .87  .0030 .0050 

180 ° - 1.0 - 1.0 

The similarities between the two flows are striking. The rear stagnation point and the 
intra-wake velocity maximum are almost identically positioned. The only noticeable 
difference between the two flows is the fact that the intra-wake velocities are greater in the 
case of the arc but this is to be expected since the two-dimensional problem has unbounded 

fluid velocity at infinity. 
Another way of comparing the two flows is to examine how the dividing streamline leaves 

the rim in both cases. In the cap problem the angle of separation is known [1] to be 

Po = 2 tan-1 (½ cot ½~) (7.1) 

where/z 0 is measured as shown in Figure 2c. This separation angle is found by expanding 
the stream function q/c near the rim of the cap and then using the first term of this expansion 
to calculate the angle kt 0 at which the dividing streamline ~u c = 0 leaves the rim. Equivalently 
one can expand the velocity component qu = 8q/c/dp near the rim and g =/z  o will define the 
ray emanating from the rim along which qu = 0. We adopt the latter method to analyze the 

rim flow in the arc problem. 
From Figure 2c it is easily seen that 

q. = U cos (~ + #) - V sin (~ + p), (7.2) 

X = - ¼ s i n s  + p sin(~ +p ) ,  

Y = ¼(1 - cos ct) + p cos (c~ +/z). 
(7.3) 

Now in order to calculate the leading term of the expansion for q, near the rim, we must 
have the corresponding expansions for U and V. These can be obtained from (3.9) if the 
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Stokes flow past a smooth cylinder 1- 85 

expansions for u, v and ~, about the edge of the thin plate (oblate ellipse with 22 --- 1) in the 
x, y-plane are known. But we know from Moffatt [9] that near the edge of the thin plate 

~u ~ p~, u, v ~ p~, (7.4) 

and so from (3.9) and (7.3) the leading terms (U 1, V1) in the expansions for (U, V) are given 
by 

U l = u l c o s a - v ~ s i n a ,  V l = - u  l s i n a - v  l cosa ,  (7.5) 

where (ul, vl) are the leading terms in the corresponding expansions for (u, v). Substituting 
(7.5) into (7.2) and simplifying yields the leading term (qu)l in the expansion for qu: 

(qu)l = u~ cos/~ + v~ sin/t. (7.6) 

The calculation of u~ and vx from (3.5) is tedious but a very interesting result emerges when 
the work is finally completed: 

(qu)l = 4P ~ cot ½ct cos 2 ½ct cos 3 ½p[1 - 3 tan ½~ tan ½/t]. (7.7) 

Setting (qu)~ equal to zero and solving for the separation angle kt o yields result (7.1). The 
angle at which the dividing streamline leaves the endpoint of the arc in two dimensions is 
exactly the same as the corresponding angle of separation in three dimensions regardless of 
the value of c~. 

This may or may not be surprising depending on one's point of view. The flow about the 
rim of a spherical cap is locally a two-dimensional flow and so one would not expect much 
difference between the angles of separation in the two problems. Nevertheless the fact that 
these two angles are exactly the same in all cases further highlights the striking similarity 
between the two flows. It seems likely therefore that the flow features in a uniform three- 
dimensional Stokes flow can be duplicated in two dimensions by requiring that the flow 
satisfy the logarithmic condition at infinity given in (2.4). 
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